On Quadratic Invariants and Symplectic Structure
نویسندگان
چکیده
We show that the theorems of Sanz-Serna and Eirola and Sanz-Serna concerning the symplecticity of Runge-Kutta and Linear Multistep methods respectively, follow from the fact that these methods preserve quadratic integral invariants and are closed under differentiation and restriction to closed subsystems.
منابع مشابه
An Algebraic Approach to Invariant Preserving Integators: The Case of Quadratic and Hamiltonian Invariants
In this article, conditions for the preservation of quadratic and Hamiltonian invariants by numerical methods which can be written as B-series are derived in a purely algebraical way. The existence of a modified invariant is also investigated and turns out to be equivalent, up to a conjugation, to the preservation of the exact invariant. A striking corollary is that a symplectic method is forma...
متن کاملar X iv : d g - ga / 9 41 10 15 v 1 3 0 N ov 1 99 4 INTEGRAL GEOMETRY OF PLANE CURVES AND KNOT INVARIANTS
We study the integral expression of a knot invariant obtained as the second coefficient in the perturbative expansion of Witten’s Chern-Simons path integral associated with a knot. One of the integrals involved turns out to be a generalization of the classical Crofton integral on convex plane curves and it is related with invariants of generic plane curves defined by Arnold recently with deep m...
متن کاملIntegral Geometry of Plane Curves and Knot Invariants
We study the integral expression of a knot invariant obtained as the second coefficient in the perturbative expansion of Witten's Chern-Simons path integral associated with a knot. One of the integrals involved turns out to be a generalization of the classical Crofton integral on convex plane curves, and it is related with the invariants of generic plane curves recently defined by Arnold, with ...
متن کاملSymplectic Möbius integrators for LQ optimal control problems
The paper presents symplectic Möbius integrators for Riccati equations. All proposed methods preserve symmetry, positivity and quadratic invariants for the Riccati equations, and non-stationary Lyapunov functions. In addition, an efficient and numerically stable discretization procedure based on reinitialization for the associated linear Hamiltonian system is proposed.
متن کاملSymplectic cohomologies on phase space
The phase space of a particle or a mechanical system contains an intrinsic symplectic structure, and hence, it is a symplectic manifold. Recently, new invariants for symplectic manifolds in terms of cohomologies of differential forms have been introduced by Tseng and Yau. Here, we discuss the physical motivation behind the new symplectic invariants and analyze these invariants for phase space, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994